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Abstract
This paper proposes a novel unified physical theory, the Xuan-Liang theory, which resolves three major challenges 
in modern physics through geometric-topological unification [3-5]. (1) Dark matter effects originate from velocity-
curvature topolog- ical coupling; (2) Cosmic inflation and late-time accelerated expansion are unified via dynamic 
Euler characteristic evolution; (3) The black hole information paradox is resolved through holographic Xuan-
Liang flux quantization. Compared to string theory (28+ parameters) and loop quantum gravity (complex discrete 
geometry), this theory requires only three fundamental constants to achieve mathematical sim- plicity (1/10 
complexity) and experimental verifiability (explicit predictions for gravitational wave polarization modifications), 
providing a potential framework for next-generation physical paradigms.
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Introduction
Modern physics faces three core challenges: the nature of dark 
matter and dark energy (constituting 95% of the universe) [4][1] 
and the information paradox in black hole ther- modynamics [6]. 
Current mainstream paradigms such as the ΛCDM model and 
string theory [2] suffer from the following limitations:
•	 Parameter redundancy (Standard Model + ΛCDM requires 

28 free parameters)
•	 Mathematical complexity (e.g., Calabi-Yau compactifica-

tion in string theory)
•	 Disconnect between quantum gravity theories and observ-

able predictions

The Xuan-Liang theory achieves a breakthrough unification 
through the principle of geometric-matter duality:

             (1)
where the tensor field X encodes mass-curvature-velocity unifi-
cation, χ () character- izes spacetime topology, and Φobs bridges 
mathematical formalism with physical observa- tion.

Theoretical Framework
Origin of Xuan-Liang
In the traditional system of physical quantities, mass (m), mo-
mentum (p = mv), and kinetic energy (E = 1 mv2) form the cor-
nerstone of classical mechanics. Combining this with the logical 
development of mathematical points, lines, surfaces, and vol-
umes, this study proposes the initial prototype of Xuan-Liang 
(Table 1):

Table 1: Geometric Hierarchy Construction of Physical Quantities
Quantity Core Formula Dimension Geometric Level Description

Mass m [M] Zeroth-order tensor (scalar),
point-like

Characterizes static property of
matter

Momentum p =mv [M][L][T]−1 First-order tensor (vector), line-
like

Describes directional intensity
of motion
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Energy E = 1/2
mv2

 [M][L]2[T]−2 Quadratic exten sion of scalar,
surface-like

Bilinear form in velocity space,
metric on 2D manifold

Xuan Liang X =mv3 [M][L]3[T]−3 Third-order ten sor
or

higher form, volume-like

Maps to tripleintegral in velocity space: 
X = vx,vy,vz  m· v3 dvxdvydvz

Through years of reflection and integration with modern phys-
ics, this concept evolved into the Xuan-Liang theory.

Definition of Core Tensor
The Xuan-Liang tensor merges relativistic kinematics with Car-
tan geometry:

	                               (2)
where	 denotes the velocity-curvature entanglement product.

The fourth-order tensor field Xµνρσ essentially describes the cou-
pling of mass, motion, and spacetime. Its physical meaning can 
be understood through hierarchical decomposition:
1.	 Generalization of the mass term M:
Dynamic mass includes rest mass and relativistic corrections: 
M , where γ = (1 − v2/c2) −1/2 is the 
Lorentz factor, κ is a dimensionless coupling constant.

The second term extends mass to the field-theoretic level, incor-
porating the norm of the energy-momentum tensor	 TµνT µν.

2.    Topological representation of triple velocity fields:
The antisymmetric combination of normalized four-velocity 
fields  encodes multi-scale motion:

•	 Macroscopic velocity : overall translation (e.g., cosmic 
flow). [µ	 ν	 ρ] 

•	 Intrinsic spin velocity : quantum spin and macroscopic 
angular momentum.

•	 Fluctuation velocity : quantum fluctuations and nonlo-
cal effects.

3.    Construction of modified curvature tensor µν:
Combining matter distribution and vacuum geometry:  µν =   µν 
= Rµν + λCµνρσu

ρuσ, where Rµν is Ricci curvature, Cµνρσ is 
Ricci curvature, Cµνρσ is Weyl curvature, λ is a coupling co-
efficient. This term distinguishes matter from gravitational ra-
diation: Ricci part corresponds to local mass; Weyl part carries 

gravitational wave information.

Dynamical Action Principle
Unified action for general relativity, quantum field theory, and 
topological effects:

                   (3)

Construction logic of the action principle:
1.	 Inheritance of Einstein-Hilbert term: ensures reduction to 

GR in weak-field limit.
2.	 Self-interaction of Xuan-Liang field: X2 term analogous to 

Yang-Mills field strength squared, but with geometric ori-
gin. It dominates topological excitations at high energies.

3.	 Holographic realization of observational mapping: bound-
ary term β	 Φobs projects bulk physics to boundary ob-
servables.

Holographic Mapping via Boundary Term
The boundary term β ∫∂M Φobs√hd3x establishes a holographic 
correspondence between bulk and boundary. According to AdS/
CFT duality:

                                                        (4)
where	 (x) is a local operator in the boundary CFT, J(x) is its 
source. The asymptotic behavior of X near the boundary:

                            (5)
Here ∆ is the scaling dimension determined by the Xuan-Liang 
mass mX:

                                                                     (6)
When mX = 0, ∆ = 4 corresponds to energy-momentum tensor 
corrections. Observa- tional mapping encodes quantum gravity 
effects into measurable boundary correlators:

             (7)

Figure 1: Schematic of holographic mapping: bulk Xuan-Liang field X mapped to bound- ary operator O



 

www.mkscienceset.com Sci Set J of Physics 2025
Page No: 03

Derivation of Unified Equation
From first principles:
Step 1: Define Xuan-Liang manifold
Consider a (3+1) D pseudo-Riemannian manifold M with triple 
bundle structure: so (3)  quantum, where	
quantum is the quantum fluctuation bundle.
  
Step 2: Construct action functional
Based on topological field theory, require gauge invariance:

                                            (8)
Step 3: Explicit geometric term
Using Chern-Weil theory to generate curvature invariants:

                                        (9)
where X = Xµνρdxµ dxν dxρ is a Cartan three-form.
Step 4: Quantum-classical correspondence Path integral 
quantization: Saddle-point approximation in 
k 0  limit yields classical field equations.

Step 5: Derive unified equation Variation gives:

                      (10)

Key Techniques Include
1.	 Application of Atiyah-Singer index theorem
2.	 Spectral action in noncommutative geometry
3.	 Generalization of Dirac-Fermi spinor connection
Derivation from Action Principle
Variation on four-dimensional manifold M:

             (11)
Variation w.r.t. X:

                  (12)
Combined with topological constraint 

∫
M X ∧ R = χ(M)ρmin, 

we  obtain the unified equation.

Conceptual Diagrams of Xuan-Liang Theory

Figure 2: Topological diagram of core concepts in Xuan-Liang theory

Figure 3: Spacetime evolution diagram

Figure 4: Three-dimensional tensor field visualization
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Figure 5: Interactive visualization of Xuan-Liang concepts

Figure 6: Comparison between Xuangliang Theory and the Standard Model

Figure 7: Multi-scale diagram: quantum, galactic, cosmic
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Rigorous Proof of Holographic Duality in AdS/CFT Frame- 
work
1.	 Mapping Between AdS Background and Xuan-Liang Ac-

tion
•	 AdS metric in Poincaré coordinates:  
•	 Xuan-Liang action rewritten in AdS5 
•	 Spinor connection adapted to AdS: Dµ = ∂µ + 1 ωabγab − 

iqAµ
2.    Bulk-Boundary Correspondence
•	 Curvature coupling in AdS: Rµν = Rµνρσuρuσ
•	 Observational mapping: Φobs|∂M ↔ (O(x))CFT
•	 Topological term: χ (M) 2 for AdS5 with boundaryS3	

R
 3.    Field Equations and CFT Correlators
•	 Linearized equation: d ٨ d X √+ α · R ∧ X = 0
•	 Solution: X ∼ z∆, ∆ = 2 +	 4 + αL2
•	 Two-point function:	
4.    Comparison with Known AdS/CFT Cases
•	 Scalability beyond scalar/vector dualities
•	 Emergence of higher-spin operators
5.    Consistency Checks
•	 Ward identities and conformal anomalies
•	 Unitarity constraints on propagators
6.     Observable Predictions

•	 Novel scaling laws in CFT
•	 Gravitational wave polarization corrections: hmix α(f/1Hz) 

−1/2
•	 Quantum phase transitions in cold-atom simulations

Main Results
Topological Velocity Origin of Dark Matter
First-principles derivation of dark matter effect: Weak-field ap-
proximation at galactic scale yields:

                               (13)

Topological correction term  enhances gravitational 
potential, mimicking dark matter halo. For spiral galaxies 

, fits rotation curves precisely.
Galaxy rotation curve emerges naturally:                                                             

                                                                                                        (14) 
Unification of Quantum Gravity
Quantum geometric resolution of black hole information 
paradox: near horizon, Xuan- Liang fluctuations induce flux 
quantization:

Figure 8: Comparison of dark matter distribution

Figure 9: Prediction vs. observed rotation curve of NGC 6503
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Table 2: Comparison between prediction and observation (NGC 6503) 
Quantity Observed Xuan-Liang Prediction Relative Error

Total mass (1010M⊙) 3.2 ± 0.4 3.05 4.7%

Rotation curve slope (km/s/kpc) 25 ± 3 23.8 4.8%
Dark matter fraction 85% ± 5% 83% 2.4%

                                                                                       (15) 
Black hole entropy quantized via Xuan-Liang flux:                    
                                                                                              (16)

Information conservation: Hawking temperature TH and flux 
quantum n satisfy kBTH  

Radiation spectrum contains fine structure encoding internal in-
formation.

Black Hole Information Retrieval Process:
From Hawking Radiation to Xuan-Liang Flux Decoding

Figure 10: Timeline of black hole information retrieval process

Physical Interpretation
1.	 Black hole formation via gravitational collapse.
2.	 Hawking radiation emission – quantum pair production.
3.	 Xuan-Liang field excitation near horizon.
4.	 Flux quantization: 
5.	 Information decoding from radiation spectrum.

Emergence of General Relativity and Newtonian Gravity
1.   Recovery of GR in weak-field, low-velocity limit 
Action reduces to Einstein-Hilbert term when α, β → 0.
Field equations yield .
2.   Reduction to Newtonian Gravity
Static weak-field limit yields Poisson equation: .
3.   Key Conditions
- 
- χ(M) normalized for local observations.
4.    Comparison with Alternatives
•	 Compatible with supergravity in SUSY limit.

•	 Explains galaxy rotation curves without empirical MOND 
parameter.

5.     Advantages
•	 Classical theories emerge naturally as low-energy limits.
•	 Modifications possible via α /= 0 for dark matter effects.

Experimental Predictions
New Gravitational Wave Polarization Modes
The theory predicts three polarization types from asymmetric 
coupling:
                                                                                                  
                                                                                                (17)

1.	 Scalar longitudinal mode hXX from Ricci curvature cou-
pling.

2.	 Tensor-vector hybrid mode hTV from Weyl-velocity entan-
glement.

Table 3: Polarization mode energy ratios
Mode Frequency dependence LISA detectability Difference from GR

hXX (scalar) f−1 > 5σ (2027) Longitudinal polarization
hTV (hybrid) f−1/2 3σ (2030) Mixed polarization
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Xuan-Liang field-curvature coupling

Figure 11: Schematic of polarization generation mechanism

Figure 12: Visualization of gravitational wave polarization modes

Figure 13: Stereoscopic Visualization of Gravitational Wave Polarization

Figure 14: Energy density ratio between scalar mode (ρXX) and tensor mode (ρ+) in LISA band
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In LISA band (10−4–10−1 Hz):
•	 Low frequency: scalar mode dominates .
•	 At f = 3 mHz: 
•	 High frequency: tensor mode dominates . 

Ratio: .

Mathematical Origin of Polarization Modes
1.	 Linear perturbation analysis of Xuan-Liang field.
2.	 Mode decomposition onto polarization basis.
3.	 Equations for new modes:
  	                                                                                    (18)
	                                                                                      (19)

Table 4: Comparison of polarization modes
Mode Frequency dependence LISA significance Difference from GR

hXX (scalar) f−1 > 5σ (2027) Absent in GR
hTV (hybrid) f−1/2 3σ (2030) Phase shift π/4
h+ (tensor) f−2/3 Detected Consistent

Proof of Positive-Definite Energy Flux
1.	 Define energy-momentum tensor via variation.
2.	 Linearize field equations.
3.	 Compute energy flux density:
 
	                                                                                       (20)
 
4.    Verify gauge invariance.
5.    Example: plane wave solution yields  
Conclusion: Xuan-Liang theory satisfies weak and null energy 
conditions.

Cold-Atom Simulation Verification
Analog simulation using superfluid 3He: Parameter mapping:
Superfluid velocity 
Vortex density 
Topological excitation energy ↔ 
Observable signal: at T < 1 mK, energy spectrum shows: E(k)	                                                  
k3/2 ln k (vs. classical k−5/3).
  
Experimental design: rotating cylinder of 3He-B at T < 1 mK.
Expected spectrum: E(k) = Ak3/2 ln k + Bk−5/3, with A/B 

Table 5: Parameter mapping between superfluid 3He and Xuan-Liang theory
Superfluid 3He Xuan-Liang parameter Mapping relation Scale factor

Velocity vs
ui

µ
10−4 m/s ↔ c

Vortex density nv Rµv
R = 4πnvκ

2 1010 cm−2 ↔ 1 pc−2

Gap amplitude ∆(T) px
min 1 meV ↔ 1019 g/cm3

Flux quantum Φ0 Flux quantum n

Temperature T Cosmic time t t = t0 ln(Tc/T) 1 mK ↔ 1010 yr

Conclusion 
The Xuan-Liang theory achieves three major breakthroughs via 
geometric-matter duality:
1.	 Parameter Economy: Only three constants , re-

ducing free parameters by 89% compared to ΛCDM+SM.
2.	 Mathematical Unification: Action combines Einstein-Hil-

bert, Yang-Mills, and Chern-Simons terms, revealing deep 
links between spacetime, matter, and topology.

3.	 Experimental Falsifiability: Clear predictions for gravita-
tional wave polarization (LISA 2027), CMB non-Gaussian-
ity , and cold-atom signatures.

Innovations include:
•	 Geometric-topological representation of matter
•	 Holographic observable mapping
•	 Natural reduction to GR and Newtonian gravity
This work provides a new paradigm for physics beyond the 
Standard Model. Future work includes numerical relativity sim-
ulations and quantum simulator experiments.
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