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[Abstract )
This paper proposes a novel unified physical theory, the Xuan-Liang theory, which resolves three major challenges
in modern physics through geometric-topological unification [3-5]. (1) Dark matter effects originate from velocity-
curvature topolog- ical coupling; (2) Cosmic inflation and late-time accelerated expansion are unified via dynamic
Euler characteristic evolution; (3) The black hole information paradox is resolved through holographic Xuan-
Liang flux quantization. Compared to string theory (28+ parameters) and loop quantum gravity (complex discrete
geometry), this theory requires only three fundamental constants to achieve mathematical sim- plicity (1/10
complexity) and experimental verifiability (explicit predictions for gravitational wave polarization modifications),

\providing a potential framework for next-generation physical paradigms.

J
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Introduction

Modern physics faces three core challenges: the nature of dark

matter and dark energy (constituting 95% of the universe) [4][1]

and the information paradox in black hole ther- modynamics [6].

Current mainstream paradigms such as the ACDM model and

string theory [2] suffer from the following limitations:

e Parameter redundancy (Standard Model + ACDM requires
28 free parameters)

e Mathematical complexity (e.g., Calabi-Yau compactifica-
tion in string theory)

*  Disconnect between quantum gravity theories and observ-
able predictions

/ [Tr(X A *X) + (Ux, DUx) + aX AR] = x(M)pZP + 8 [ B

M oM (D
where the tensor field X encodes mass-curvature-velocity unifi-
cation, () character- izes spacetime topology, and ®obs bridges
mathematical formalism with physical observa- tion.

Theoretical Framework

Origin of Xuan-Liang

In the traditional system of physical quantities, mass (m), mo-
mentum (p = mv), and kinetic energy (E = 1 mv2) form the cor-
nerstone of classical mechanics. Combining this with the logical
development of mathematical points, lines, surfaces, and vol-

) ) ) ) umes, this study proposes the initial prototype of Xuan-Liang
The Xuan-Liang theory achieves a breakthrough unification (Table 1):

through the principle of geometric-matter duality:

Table 1: Geometric Hierarchy Construction of Physical Quantities

Quantity Core Formula Dimension Geometric Level Description
Mass m [M] Zeroth-order tensor (scalar), Characterizes static property of
point-like matter
Momentum p =mv [M][L][T]-1 First-order tensor (vector), line- Describes directional intensity
like of motion
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Energy E=1/2 [M]J[L]2[T]-2 | Quadratic exten sion of scalar, Bilinear form in velocity space,
mv? surface-like metric on 2D manifold
Xuan Liang X =mv3 [M][L]3[T]-3 Third-order ten sor Maps to tripleintegral in velocity space:

higher form, volume-like

= . x73
or X VX, Vy,Vz m- v dvxdvydvZ

Through years of reflection and integration with modern phys-
ics, this concept evolved into the Xuan-Liang theory.

Definition of Core Tensor
The Xuan-Liang tensor merges relativistic kinematics with Car-
tan geometry:

Xwpe = M - u&)uf)u(p‘? ® R;ﬂRaﬁ

where

2

denotes the velocity-curvature entanglement product.

The fourth-order tensor field pra essentially describes the cou-
pling of mass, motion, and spacetime. Its physical meaning can
be understood through hierarchical decomposition:

1. Generalization of the mass term M:

Dynamic mass includes rest mass and relativistic corrections:
MM = ymo + k\/TuTH, where y = (1 — v2/c2) —1/2 is the
Lorentz factor, k is a dimensionless coupling constant.

The second term extends mass to the field-theoretic level, incor-
porating the norm of the energy-momentum tensor ~ TuvT pv.

2. Topological representation of triple velocity fields:

The antisymmetric combination of normalized four-velocity

fields UE;)UE/Z)U;?)v encodes multi-scale motion:

e Macroscopic velocity “ELI): overall translation (e.g., cosmic
flow). [n v pJ

* Intrinsic spin velocity uf): quantum spin and macroscopic
angular momentum.

*  Fluctuation velocity u
cal effects.

3. Construction of modified curvature tensor pv:

Combining matter distribution and vacuum geometry: pv = v

= RHV + kC”Vpﬁu"u", where Rw is Ricci curvature, prc is

Ricct curvature, Cuvpo is Weyl curvature, A is a coupling co-

@ quantum fluctuations and nonlo-

gravitational wave information.

Dynamical Action Principle
Unified action for general relativity, quantum field theory, and
topological effects:

S = /d“w«/fg R + X%+ Lsu| + 8 BV hDops
167G

o 3)

Construction logic of the action principle:

1. Inheritance of Einstein-Hilbert term: ensures reduction to
GR in weak-field limit.

2. Self-interaction of Xuan-Liang field: X2 term analogous to
Yang-Mills field strength squared, but with geometric ori-
gin. It dominates topological excitations at high energies.

3. Holographic realization of observational mapping: bound-
ary term f  ®obs projects bulk physics to boundary ob-
servables.

Holographic Mapping via Boundary Term

The boundary term B oM ®obsVhd3x establishes a holographic
correspondence between bulk and boundary. According to AdS/
CFT duality:

Pobs = (O(2)) cpr
_ 5Sgravity
0J(x) |, , )

where (x) is a local operator in the boundary CFT, J(x) is its
source. The asymptotic behavior of X near the boundary:
X;Ll,pa(z,x) ~ ZA74X(O);Lup0 (I) (Z — 0) (5)
Here A is the scaling dimension determined by the Xuan-Liang
mass mX:

A =24 /4+m}L? (6)

When mX = 0, A = 4 corresponds to energy-momentum tensor
corrections. Observa- tional mapping encodes quantum gravity
effects into measurable boundary correlators:

efficient. This term distinguishes matter from gravitational ra- G (z,,...,2,) = (O(z1) --- O(z,)) = o

s . . 0J(zy) -0 (xy)
diation: Ricci part corresponds to local mass; Weyl part carries (7)

.f/ﬂ"r
,"/
pd
H'//
.--’//
f/f'f
.-""H
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e
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.-‘"/'
.-"f-/-?d-
Figure 1: Schematic of holographic mapping: bulk Xuan-Liang field X mapped to bound- ary operator O
P : 02
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Derivation of Unified Equation

From first principles:

Step 1: Define Xuan-Liang manifold

Consider a (3+1) D pseudo-Riemannian manifold M with triple
bundle structure: TM ®so (3) 50 (3) & Vc quantum, where
quantum is the quantum fluctuation bundle.

Step 2: Construct action functional
Based on topological field theory, require gauge invariance:

S = /Egeo + Eobs
M oM

geometric term  observational term (8)
Step 3: Explicit geometric term

Using Chern-Weil theory to generate curvature invariants:

Lo = Tr(X A #X) + aX AR ©
where X = prdx“ dx¥ dxr is a Cartan three-form.

Step 4: Quantum-classical correspondence Path integral

quantization: Z = [ DXDg,,¢**/" Saddle-point approximation in
k O limit yields classical field equations.

Step 5: Derive unified equation Variation gives:

05

0X

0= ‘ Tr(X A *X) + aR = y(M)p™

(10)

Key Techniques Include

1. Application of Atiyah-Singer index theorem

2. Spectral action in noncommutative geometry

3. Generalization of Dirac-Fermi spinor connection

Derivation from Action Principle

Variation on four-dimensional manifold M:

08 = (5/ (Tr(XA#X) +aXAR) — 3§ (x(M)p™) =0

M )

Variation w.r.t. X:

2xX+aR=0 = Tr(XA*X):—%XAR (12)

Combined with topological constraint )y X A R = y(M)p™™",
we obtain the unified equation.

Conceptual Diagrams of Xuan-Liang Theory

[Xuan-Li Tensor]

[TripleVelés’city Field] Modified C

5
A

Oe(

| Dark Matter Effect |

o

6e?

Quantum Gravity

Figure 2: Topological diagram of core concepts in Xuan-Liang theory
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Figure 3: Spacetime evolution diagram

Figure 4: Three-dimensional tensor field visualization
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Figure 5: Interactive visualization of Xuan-Liang concepts
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Figure 6: Comparison between Xuangliang Theory and the Standard Model
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Rigorous Proof of Holographic Duality in AdS/CFT Frame-

work

1. Mapping Between AdS Background and Xuan-Liang Ac-
tion

+  AdSmetric in Poincaré coordinates: ds= 5 (~df* + di? + i + did + d2%)

*  Xuan-Liang action rewritten in AdS;

*  Spinor connection adapted to AdS: Dp = o + 1 wabyab —
iqAp

2. Bulk-Boundary Correspondence

*  Curvature coupling in AdS: Ruv = Ruvpoupuc

*  Observational mapping: ®obs|0M < (O(x))CFT

+  Topological term: y (M) —2 for AdS5 with boundaryS3

R
3. Field Equations and CFT Correlators
*  Linearized equation: d AdX 3 o RAX=0
e« Solution: X ~ zA, A=2 + 4+ al2
*  Two-point function: (0(2)0(y)) o & —y|7*2
4. Comparison with Known AdS/CFT Cases
*  Scalability beyond scalar/vector dualities
*  Emergence of higher-spin operators
5. Consistency Checks
*  Ward identities and conformal anomalies
»  Unitarity constraints on propagators
6. Observable Predictions

*  Novel scaling laws in CFT

*  QGravitational wave polarization corrections: hmix o(f/1Hz)
-1/2

*  Quantum phase transitions in cold-atom simulations

Main Results

Topological Velocity Origin of Dark Matter

First-principles derivation of dark matter effect: Weak-field ap-
proximation at galactic scale yields:

min 2
V2P = 471G pyis <1 + M)

3Mvis (13)

. . xpx R? o
Topological correction term “3,7  enhances gravitational
potential, mimicking dark matter halo. For spiral galaxies
X~ 2, py" ~ 10’24g/ cms, fits rotation curves precisely.

Galaxy rotation curve emerges naturally:
G M,is(r) X (M) pipiny2
ro = 1
Uror(7) \/ r < + 3Myis(1)

Unification of Quantum Gravity

(14)

Quantum geometric resolution of black hole information
paradox: near horizon, Xuan- Liang fluctuations induce flux
quantization:

Dark Matter Density at Cluster Scale
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Figure 8: Comparison of dark matter distribution

WGC 6503 Wotation Curve: Ruan-Liang Theory vs Observation
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Figure 9: Prediction vs. observed rotation curve of NGC 6503
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Table 2: Comparison between prediction and observation (NGC 6503)

Quantity Observed Xuan-Liang Prediction Relative Error
Total mass (IOIOMG) 32+04 3.05 4.7%
Rotation curve slope (km/s/kpc) 25+3 23.8 4.8%
Dark matter fraction 85% =+ 5% 83% 2.4%
e Information conservation: Hawking temperature T, and flux
vpo . . 1 3
?{ Xy podBHP7 = n\/—5. nE Vi (15) quantumn satisfy k. T, SjéM ) @

Black hole entropy quantized via Xuan-Liang flux:
(16)
k :
Sp = TB 7{ XppoedZHP = - Amkpy/pon, neZ*

Radiation spectrum contains fine structure encoding internal in-
formation.

Black Hole Information Retrieval Process:
From Hawking Radiation to Xuan-Liang Flux Decoding

Process Explanation:
1. Black hole formation via gravitational collapse
2. Hawking radiation: particle-antiparticle pair creation
3. Xuan-Liang field excitation: quantum fluctuations
4. Flux quantization: topological quantum numbers
5. Information decoding from radiation
Thermal Radiation Spectrum Quantum Fluctuations Flux Quantization Information Retrieval
= _he? he e =
T = anem 6xx/2¢ §X=n1f§ Sinfo = kelnn
———
N,
[’ . \‘
: X‘." H loj1j0[1] 1|0}
\ e
S e
Step 1 Step 2 Step 3 Step 4 Step 5
Black Hole For diati Liang Field Flux Q izati Information Decoding

Figure 10: Timeline of black hole information retrieval process

Physical Interpretation

Black hole formation via gravitational collapse.
Hawking radiation emission — quantum pair production.
Xuan-Liang field excitation near horizon.

Flux quantization: § Xd¥ = n\/hG/c’.

Information decoding from radiation spectrum.

A S e

Emergence of General Relativity and Newtonian Gravity
1. Recovery of GR in weak-field, low-velocity limit

Action reduces to Einstein-Hilbert term when a, f — 0.
Field equations yield G, = 87GT,,,.

2. Reduction to Newtonian Gravity

Static weak-field limit yields Poisson equation: V?® = 47Gp.
3. Key Conditions

*  Explains galaxy rotation curves without empirical MOND
parameter.

Advantages

*  C(Classical theories emerge naturally as low-energy limits.

*  Modifications possible via a /= 0 for dark matter effects.

Experimental Predictions

New Gravitational Wave Polarization Modes

The theory predicts three polarization types from asymmetric

coupling:
hxx o< Wpae“”e””dd‘w

f X an

1. Scalar longitudinal mode h,, from Ricci curvature cou-

- pgn(in = (167GL?)"! pling.
- x(M) normalized for local observations. 2. Tensor-vector hybrid mode h., from Weyl-velocity entan-
4. Comparison with Alternatives glement.
*  Compatible with supergravity in SUSY limit.
Table 3: Polarization mode energy ratios
Mode Frequency dependence LISA detectability Difference from GR
h, . (scalar) —1 > 56 (2027) Longitudinal polarization
h_,, (hybrid) =1/2 36 (2030) Mixed polarization
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Xuan-Liang field-curvature coupling
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Figure 11: Schematic of polarization generation mechanism
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Figure 12: Visualization of gravitational wave polarization modes
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Figure 13: Stereoscopic Visualization of Gravitational Wave Polarization
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Figure 14: Energy density ratio between scalar mode (pXX) and tensor mode (p+) in LISA band
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In LISA band (10—*-10—"' Hz):

*  Low frequency: scalar mode dominates ( PxXX / Pr > 1) .
* Atf=3mHz: PXX/P+%0-5-
*  High frequency: tensor mode dominates (pxx/p+ < 0.1).

Mathematical Origin of Polarization Modes
1. Linear perturbation analysis of Xuan-Liang field.
2.  Mode decomposition onto polarization basis.

3. Equations for new modes:

Ratio: pxx/p+ ~ 107%a?(f /1 mHz)"/3, Ohxx = —167Gapi"x(M)3;R (18)
(07 — V)hrv = Beind; Xowoo (19)
Table 4: Comparison of polarization modes
Mode Frequency dependence LISA significance Difference from GR
h_ (scalar) f! > 56 (2027) Absent in GR
hTV (hybrid) 12 36 (2030) Phase shift n/4
h+ (tensor) 23 Detected Consistent

Proof of Positive-Definite Energy Flux

1. Define energy-momentum tensor via variation.
2. Linearize field equations.

3. Compute energy flux density:

1 . ) . 5
- >
PEW = 5 <|hxxl + |hrv| > >0 (20)

4. Verify gauge invariance.

5. Example: plane wave solutionyields fow = g (4% + B?) > 0.
Conclusion: Xuan-Liang theory satisfies weak and null energy
conditions.

Cold-Atom Simulation Verification
Analog simulation using superfluid *He: Parameter mapping:
Superfluid velocity Vs <> ULZ )
Vortex density 1, <> R )

. . . 111
Topological excitation energy <> 2 x

Observable signal: at T < 1 mK, energy spectrum shows: E(k)X
K3/ In k (vs. classical k—/3).

n

Experimental design: rotating cylinder of *He-B at T <1 mK.
Expected spectrum: E(k) = Ak*/ In k + Bk—3/%, with A/B o< p™

Table 5: Parameter mapping between superfluid *He and Xuan-Liang theory

Superfluid 3He Xuan-Liang parameter Mapping relation Scale factor
. i . —4
Velocity v u, u(z) _ _h iy 10* m/s < ¢
J m3 %)

Vortex density nv R R = 47n k? 109 cm <> 1 pc ~

Gap amplitude A(T) p" min m2A2 1 meV < 10" g/cmj
Px = 713
Flux quantum ®o Flux quantum n n=ao /q)O h /2m3 o \/W
Temperature T Cosmic time t t =t In(T/T) 1 mK < 101 yr
Conclusion References

The Xuan-Liang theory achieves three major breakthroughs via

geometric-matter duality:

1. Parameter Economy: Only three constants { p%in, a, }, re-
ducing free parameters by 89% compared to ACDM+SM.

2.  Mathematical Unification: Action combines Einstein-Hil-
bert, Yang-Mills, and Chern-Simons terms, revealing deep
links between spacetime, matter, and topology.

3. Experimental Falsifiability: Clear predictions for gravita-
tional wave polarization (LISA 2027), CMB non-Gaussian-
ity (fxL & 0.3), and cold-atom signatures.

Innovations include:

*  Geometric-topological representation of matter

*  Holographic observable mapping

*  Natural reduction to GR and Newtonian gravity

This work provides a new paradigm for physics beyond the

Standard Model. Future work includes numerical relativity sim-

ulations and quantum simulator experiments.
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